
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +386

E-mail addr
Journal of Sound and Vibration 314 (2008) 194–216

www.elsevier.com/locate/jsvi
Extended Lindstedt–Poincare method for non-stationary
resonances of dynamical systems with cubic nonlinearities

R.R. Pušenjak�
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Abstract

This paper presents the extended Lindstedt–Poincare (EL–P) method, which applies multiple time variables to treat non-

stationary oscillations arising in dynamical systems with cubic nonlinearities due to the slowly varied excitation

parameters. The method is applied extensively in research of non-stationary vibrations of clamped-hinged beams.

Recognizing the aperiodic nature of non-stationary oscillations, the new formulation is presented by adding an additional,

slow time scale beside time scales of the nonlinear system, which generally correspond to the incommensurate nonlinear

frequencies of the response. Using this concept, a generalized approach of the study to the passage through fundamental,

superharmonic and subharmonic resonances is presented in the paper. Effects of slowly varying excitation frequency and

slowly varying excitation amplitude on the non-stationary oscillations are studied with the computation of deviations from

the stationary response. Although the method is formulated for N-dof dynamical systems having weak cubic nonlinearities,

it is applied for non-stationary vibrations, where two-mode shape approximation of damped and undamped clamped-

hinged beam, respectively, is used and the simultaneous appearance of internal resonance is taken into account. Stability

analysis of stationary solutions is performed and comparisons of stationary resonance curves by results obtained with the

incremental harmonic balance (IHB) method show good agreement. The passage through the fundamental resonance of

damped and undamped clamped-hinged beam, respectively, is investigated in detail.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Stationary oscillations of nonlinear dynamical systems are phenomena that seldom appear in practice and
can be considered as idealization in the treatment of dynamical systems. Nonlinear oscillations are mostly
non-stationary due to the time-varying excitation or control parameters, respectively. Non-stationary
oscillations produced by time-varying excitation or control are inherently aperiodic.

Non-stationary responses can be studied analytically for weakly nonlinear dynamical systems only. For this
purpose, numerous methods have been asserted in the past. Mitropolski [1] developed the asymptotic method
and Agrawal and Ewan-Iwanowski [2] generalized the asymptotic method for treating combination resonance.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nayfeh [3] and Nayfeh and Mook [4] developed averaging methods and the method of multiple scales. In the
last two decades, the Lindstedt–Poincare method gained much attention. Lau et al. [5] and Chen et al. [6]
developed an alternative perturbation procedure of multiple scales for computing aperiodic vibrations and
various resonances of N-dof dynamical systems with weak cubic nonlinearities. Although their papers extend
applicability of the Lindstedt–Poincare method on computation of aperiodic oscillations, it does not treat
non-stationary phenomena at all. Recently, Chen et al. [7] generalized the Lindstedt–Poincare method to
multidimensional axially moving systems considering both gyroscopic coefficients and modal damping terms.

The present paper introduces a further generalization of the Lindstedt–Poincare method. In order to
conduct analytical studies of non-stationary oscillations arising in N-dof dynamical systems having weak cubic
nonlinearities, the extended Lindstedt–Poincare (EL–P) method is generalized by introducing an additional
time scale, which corresponds to the slowly varying parameter. This generalization, used by Pušenjak et al. [8],
recently is broadened by treating fundamental, superharmonic and subharmonic resonances. By introducing
the slow time scale, non-stationary oscillations caused by slowly varying excitation frequency and slowly
varying excitation amplitudes, respectively, are analyzed. The paper intends to investigate the phenomenon of
non-stationary oscillations and non-stationary resonances of clamped-hinged beam. To be able to understand
the deviations from the stationary response, the passages through resonances with different sweep rates are
performed. For verification of computed stationary response itself, the incremental harmonic balance (IHB)
method, proposed by Pušenjak and Oblak [9], is applied. This method deals with the same type of dynamical
systems as presented in this work.

This paper is organized in the following way. In Section 2, the governing system of differential equations is
discussed, which describes nonlinear oscillations of damped, multi-degree-of-freedom dynamical systems
having cubic nonlinearities. Section 3 contains the formulation of the Lindstedt–Poincare method with
multiple time scales for computation of non-stationary oscillations as well as computation of non-stationary
fundamental, superharmonic and subharmonic resonances in viscously damped N-dof dynamical systems with
cubic nonlinearities. In Section 4 the proposed method is applied to non-stationary oscillations of clamped-
hinged beams while simultaneously considering the phenomenon of internal resonance. The cases of
fundamental resonances are treated in details. It is shown that superharmonic resonance also appears as the
consequence of internal resonance. Section 5 deals with local stability of stationary solutions. Section 6
presents the results of computation of stationary and non-stationary fundamental resonances in both damped
and undamped clamped-hinged beam. After an extensive discussion of results, which for the stationary case is
compared with results of the IHB method, conclusions and suggestions for future work are drawn in Section 7.

2. Nonlinear oscillation equations of dynamical systems with viscous damping and cubic nonlinearities

Nonlinear oscillations of viscously damped dynamical systems with N-dof and cubic nonlinearities are in
general described by the system of differential equations [9]:

XN

m¼1

Mnm

d2um

dt2
þ Cnm

dum

dt
þ K1

nmum þ
XN

p¼1

XN

q¼1

K3
nmpqumupuq

" #
¼
XMt

h¼1

pnh cos ðohtþ jnhÞ ðn ¼ 1; 2; . . . ;NÞ, (1)

where um (m ¼ 1,2,y,N) represent the generalized coordinates as unknowns of the system and first and
second derivatives with respect to the time t denote generalized velocities and generalized accelerations,
respectively. In mechanical systems, Mnm, Cnm, K1

nm and K3
Nnm

are coefficients, which usually mean the mass,
damping, linear stiffness and cubic nonlinear stiffness, respectively. Eq. (1) is not limited on such systems only,
but can describe electrical, physical, biological, etc., dynamical systems, where appropriate meaning of the
coefficients Mnm, Cnm, K1

nm; K3
Nnm

is applied. Excitation of Eq. (1) is provided in a multi-tone form, which is
composed from Mt harmonic components having in general incommensurate frequencies. Accordingly, pnh,
oh, jnh (h ¼ 1,2,y,Mt) denote amplitudes, exciting frequencies and eventual phase angles of multi-tone
excitation forces (which also may be signals, let us say, in electrical systems). The above formulation is
appropriate for the use of the IHB method with multiple time variables in dynamical systems with high cubic
nonlinearities. However, the IHB method allows computation of steady-state solutions only. In the present
paper, non-stationary responses are treated by means of an alternative perturbation method, which ultimates



ARTICLE IN PRESS
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that a somewhat restricted class of dynamical systems with small modal damping, natural frequencies of
corresponding linear modes, small cubic nonlinearities and single tone harmonic excitation is considered.
Nevertheless, for the sake of comparison of steady-state results with the IHB method, it is profitable if the
perturbation method is formulated starting from the special dimensionless case of Eq. (1) with

Mnm ¼ dnm; K1
nm ¼ o2

Ln
dnm; dnm ¼

1; n ¼ m;

0; nam;

(
(2)

where dnm denotes Kronecker delta and oLn denotes natural frequencies of corresponding linear dinamical
system. By introducing small positive expansion parameter e, coefficients of modal damping as well as
coefficients of cubic nonlinearities can be accommodated in the form

Cnm ¼ �cndnm; K3
nmpq ¼ �Gnmpq (3)

so that they appear in the same order of e. Using single tone excitation, Mt ¼ 1, which can be simplified by
pn cos(ot+jn), Eq. (1) becomes:

d2un

dt2
þ �cn

dun

dt
þ o2

Ln
un þ �

XN

m¼1

XN

p¼1

XN

q¼1

Gnmpqumupuq ¼ pn cos ðotþ jnÞ; n ¼ 1; 2; . . . ;N. (4)

The system is subjected to the harmonic excitation with excitation frequency o and corresponding phase
shifts jn. Formulation of the EL–P method provides that excitation amplitudes are expressed as power series
of the expansion parameter:

pn ¼
X1
k¼0

�kpnk, (5)

so that Eq. (4) is rewritten in the form

d2un

dt2
þ �cn

dun

dt
þ o2

Ln
un þ �

XN

m¼1

XN

p¼1

XN

q¼1

Gnmpqumupuq ¼
X1
k¼0

�kpnk cos ðotþ jnÞ; n ¼ 1; 2; . . . ;N. (6)

Using this device, we recognize that amplitudes pn1 in Eq. (6) appear at the same order of expansion
parameter as modal damping and cubic nonlinearities. Therefore, the treatment of weak excited systems is
made possible, when zero-order amplitudes pn0 and higher order amplitudes pnk (k41) are equal to zero. In
such circumstances, conditions for appearance of fundamental resonances [4] are fulfilled, which are
extensively treated in the present work. Nevertheless, it is worth mentioning that the EL–P method can also be
extended in cases of strong excitation by assuming nonzero amplitudes pn0, where all higher order amplitudes
pnk (k40) are equal to zero. If damping in Eq. (6) is neglected, the governing equation of the system with cubic
nonlinearities is obtained and treated by Chen and Cheung [10], where the Lindstedt–Poincare method is
modified for analysis of a two-degree-of-freedom system with strongly cubic nonlinearities. Particular systems
may have some symmetry properties, which can be revealed through relations between coefficients of cubic
nonlinearities. For example, coefficients of cubic nonlinearities of a uniform, clamped-hinged beam are related
by means of the equation

Gnmpq ¼ Gmnpq ¼ Gnmqp ¼ Gpqnm. (7)

3. Extended Lindstedt–Poincare method

Extension of the Lindstedt—Poincare method with multiple time scales is based on the paper of Lau et al.
[5]. Originally, the method was intended to disseminate the range of computation from periodic to aperiodic
oscillations. Because non-stationary oscillations are inherently aperiodic, applicability of the method can be
naturally extended on the research of physical phenomena caused by slowly varying parameters. However, the
method must be reformulated by adding an additional time scale to describe slowly varying parameters
properly. Aperiodic oscillations of the N-dof nonlinear dynamical systems are in general composed of
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incommensurate nonlinear frequencies on (n ¼ 1,2,y,N), which can be expressed about linear frequencies on0

of the system by means of power series:

on ¼ on0 þ
X1
k¼1

�konk ðn ¼ 1; 2; . . . ;NÞ. (8)

Eq. (8) in fact means that nonlinearities of the N-dof dynamical system do not affect linear frequencies very
much compared to nonlinear frequencies.

Proceeding from Eq. (8), the EL–P method with multiple time scales for the computation of non-stationary
oscillations is formulated for fundamental, superharmonic and subharmonic resonance.

3.1. Non-stationary oscillations at fundamental, superharmonic and subharmonic resonances

In order to be able to compute fundamental, superharmonic and subharmonic resonances and furthermore
to envisage the possibility of treating combination resonance in future work, it is assumed that the excitation
frequency o can be in general expressed as the combination frequency

o ¼ Z
XN

l¼1

alol . (9)

The parameter Z denotes the subharmonic factor, which enables that apart from fundamental
superharmonic and subharmonic resonances also can be constructed and al (l ¼ 1,2,y,N) are rational
factors in such a way that Zal correspond to ratios between excitation frequency and nonlinear frequencies. To
specialize the general treatment on the cases of fundamental, superharmonic and subharmonic resonances, it is
assumed that excitation frequency o lies in the vicinity of some weighted linear frequency Zoq0 (1pqpN) and
choose values of rational factors to be equal aq ¼ 1, al 6¼q ¼ 0 (l ¼ 1,2,y,N4l 6¼q). Then, Eq. (9) is rewritten in
the form

o ¼ Zoq (10)

and deviation of the excitation frequency o from the weighted linear frequency Zoq0 can be expressed by
means of power series

o ¼ Z oq0 þ
X1
k¼1

�koqk

 !
¼ Zoq0 þ

X1
k¼1

�kZoqk. (11)

To stress the nearness of the excitation frequency o to the frequency Zoq0, the power series (11) for
nonlinear frequency oq is truncated after the first two terms:

o¼: Zoq0 þ �Zoq1, (12)

where

s ¼ oq1 (13)

is introduced as the detuning parameter. By using the detuning parameter, the excitation frequency o can be
expressed in the form

o ¼ Zðoq0 þ �sÞ. (14)

Formulation of the EL–P method for the computation of non-stationary oscillations at fundamental,
superharmonic and subharmonic resonances is therefore based on power series (8) for N�1 nonlinear
frequencies:

on ¼ on0 þ
X1
k¼1

�konk ðn ¼ 1; 2; . . . ;N ^ naqÞ (15)

in addition to Eq. (14) with truncation of the power series (11) for the qth nonlinear frequency to the first two
terms. According to Eqs. (14) and (15) we introduce N+1 time scales (which sometimes are called time
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variables to distinguish between time scales of the EL–P method and time scales Tn ¼ ent in the standard
multiple scales method):

tn ¼ Zont ðn ¼ 1; 2; . . . ;N ^ naqÞ, (16a)

tq ¼ Zoq0t, (16b)

tNþ1 ¼ Z�t. (16c)

The time scale tq in Eq. (16b) is a fast time scale and tN+1 in Eq. (16c) is referred to as the slow time scale.
Note that the slow time scale tN+1 is distinguished from the time scale T1 ¼ et in the standard multiple scales
method only in subharmonic factor Z. This is the reason why independent variables ti (i ¼ 1,y,N+1) in this
paper are simply named time scales. By using time scales, time derivatives d/dt and d2/dt2 are replaced by
differential operators as follows:

d

dt
¼ Z

XN

i¼1;iaq

oi

q
qti

þ oq0
q
qtq

þ �
q

qtNþ1

 !
, (17a)

d2

dt2
¼ Z2

XN

i¼1;iaq

XN

j¼1;jaq

oioj

q2

qtiqtj

þ o2
q0

q2

qt2q
þ �2

q2

qt2Nþ1

"

þ 2
XN

i¼1;iaq

oi oq0
q2

qtiqtq

þ �
q2

qtiqtNþ1

� �
þ �oq0

q2

qtqqtNþ1

" ##
(17b)

and argument ot of harmonic excitation in Eq. (6) is expressed in the form:

ot ¼ Zðoq0 þ �sÞt ¼ tq þ stNþ1. (18)

Applying differential operators (17a,b) in place of time derivatives in Eq. (6) and replacing argument of
harmonic excitation ot by Eq. (18), one obtains the following set of nonlinear partial differential equations for
n ¼ 1,2,y,N:

Z2
XN

i¼1;iaq

XN

j¼1;jaq

oioj

q2un

qtiqtj

þ o2
q0

q2un

qt2q
þ �2

q2un

qt2Nþ1
þ 2 oi oq0

q2un

qtiqtq

þ �
q2un

qtiqtNþ1

� ��"

þ�oq0
q2un

qtqqtNþ1

�#
þ �cnZ

XN

i¼1;iaq

oi

qun

qti

þ oq0
qun

qtq

þ �
qun

qtNþ1

 !
þ o2

Ln
un þ �

XN

m¼1

XN

p¼1

XN

q¼1

Gnmpqumupuq

¼
X1
k¼0

�kpnk cos ðtq þ stNþ1 þ jnÞ. (19)

The approximate solution of partial differential Eq. (19) in terms of N+1 time scales is sought in the form
of the power series:

un ¼
X1
k¼0

�kunkðt1; t2; . . . ; tNþ1Þ. (20)
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By placing the assumed solution (20) into Eq. (19) and substituting nonlinear frequencies on by power series
(15), Eq. (19) is written as follows:

Z2
XN

i¼1;iaq

XN

j¼1;jaq

oi0 þ
X1
k¼1

�koik

 !
oj0 þ

X1
l¼1

�lojl

 !
q2
P1

r¼0�
runr

� �
qtiqtj

þ Z2o2
q0

q2
P1

r¼0�
runr

� �
qt2q

þ Z2�2
q2
P1

r¼0�
runr

� �
qt2Nþ1

þ 2Z2
XN

i¼1;iaq

oi0 þ
X1
k¼1

�koik

 !
oq0

q2
P1

r¼0�
runr

� �
qtiqtq

þ �
q2
P1

r¼0�
runr

� �
qtiqtNþ1

 !"

�oq0

q2
P1

r¼0�
runr

� �
qtqqtNþ1

#
þ �Zcn

XN

i¼1;iaq

oi0 þ
X1
k¼1

�koik

 !
q
P1

r¼0�
runr

� �
qti

þ oq0

q
P1

r¼0�
runr

� �
qtq

þ �
q
P1

r¼0�
runr

� �
qtNþ1

" #

þ o2
Ln

X1
r¼0

�runr

 !
þ �
XN

m¼1

XN

p¼1

XN

q¼1

Gnmpq

X1
k¼0

�kumk

 ! X1
l¼0

�lupl

 ! X1
r¼0

�ruqr

 !

¼
X1
k¼0

�kpnk cos ðtq þ stNþ1 þ jnÞ. (21)

By equating the coefficients of like powers of e on both sides of Eq. (21) and absorbing terms with respect to
indices q0 into sums, one obtains a system of linear partial differential equations, which must be solved
successively for n ¼ 1,2,y,N:

�0 : Z2
PN
i¼1

PN
j¼1

oi0oj0
q2un0

qti@tj

þ o2
Ln

un0 ¼ pn0 cos ðtq þ stNþ1 þ jnÞ , (22)

Z2
PN
i¼1

PN
j¼1

oi0oj0
q2un1

qtiqtj

þ o2
Ln

un1 ¼ pn1 cos tq þ stNþ1 þ jn

� �
;

�1 : �2Z2
PN
i¼1

oi0

PN
j¼1;jaq

oj1
q2un0

qtiqtj

þ
q2un0

qtiqtNþ1

 !
� Zcn

PN
i¼1

oi0
qun0

qti

�
PN

m¼1

PN
p¼1

PN
q¼1

Gnmpqum0up0uq0;

(23)

�2 : Z2
PN
i¼1

PN
j¼1

oi0oj0
q2un2

qtiqtj

þ o2
Ln

un2 ¼ pn2 cos ðtq þ stNþ1 þ jnÞ

�2Z2
PN
i¼1

oi0

PN
j¼1;jaq

oj1
q2un1

qtiqtj

þ
q2un1

qtiqtNþ1
þ

PN
j¼1;jaq

oj2
q2un0

qtiqtj

 !" #
� Z2

q2un0

qt2Nþ1

�Z2
PN

i¼1;iaq

oi1

PN
j¼1;jaq

oj1
q2un0

qtiqtj

þ 2
q2un0

qtiqtNþ1

 !" #
� Zcn

PN
i¼1

oi0
qun1

qti

þ
PN

i¼1;iaq

oi1
qun0

qti

þ
qun0

qtNþ1

 !

�
PN

m¼1

PN
p¼1

PN
q¼1

Gnmpqðum1up0uq0 þ um0up1uq0 þ um0up0uq1Þ

..

.

(24)

The zero-order partial differential equation (Eq. (22)) is solved by assuming the solution in the form:

un0 ¼ An0ðtNþ1Þ cos ½tn � Fn0ðtNþ1Þ� þ En0ðtNþ1Þ cos ðtq þ stNþ1 þ jnÞ, (25)

where amplitudes An0 and En0 as well as phase angle Fn0 are modulated in dependence on slow time scale
tN+1. Therefore, solution (25) is essentially aperiodic, which in turn allows non-stationary oscillations to be
computed. If the term An0(tN+1) cos[tn�Fn0(tN+1)], which represents a solution of the corresponding
homogeneous equation, is substituted into a homogeneous equation, one obtains important relations between
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linear frequencies and natural frequencies:

o2
n0 ¼

o2
Ln

Z2
. (26)

On the other hand, particular solution En0(tN+1) cos(tq+stN+1+jn) itself satisfies Eq. (22). By substituting
particular solution into Eq. (22) one obtains the following relation:

En0ðtNþ1Þ ¼ En0 ¼
pn0

ðo2
Ln
� Z2o2

q0Þ
(27)

from where it follows amplitudes En0 are coefficients, which are in fact independent of the slow time scale and
therefore are not modulated. These coefficients can be computed by Eq. (27) from known excitation
amplitudes pn0 until o2

Ln
aZ2o2

q0. When it happens, that o2
Ln
¼ Z2o2

q0, particular solution becomes nonuniform
and must be removed from Eq. (25).

The subsequent procedure continues with solving Eq. (23). Solution (25) is substituted into Eq. (23) and the
right-hand side of Eq. (23) is examined for secular terms. To assure uniform solution of Eq. (23), secular terms
on its right-hand side are removed by fulfilling the corresponding solvability conditions. Considering that
secular terms are removed, the general solution of Eq. (23) is constructed. After substitution of the constructed
solution into Eq. (23), consideration of solvability conditions and equating like terms on both sides of
Eq. (23), unknown coefficients of general solution can be found. When some coefficients cannot be determined
at this stage of approximation, they are found in subsequent stages of solving of the set of Eqs. (22)–(24) by
repeating the procedure. After all perturbation steps are over, the solution of Eq. (20) can be computed to the
desired order of e.

3.2. Passage through resonance with slowly varying parameters

Non-stationary responses can be obtained in the passage through resonance, if the excitation frequency or
excitation amplitude slowly changes with time. The passage through resonance with variable frequency is
formulated by means of Eq. (14), where detuning s becomes a function of the slow time scale tN+1,
s ¼ s(tN+1). If detuning varies linearly with time, then we have:

s ¼ s0 þ rtNþ1, (28)

where s0 denotes detuning in the starting time tN+1 ¼ 0 and r denotes the sweep rate or the so-called rate of
changing s.

Alternatively, the presented method can be applied also when the excitation amplitude slowly changes with
time. In this case, s has a fixed value, but one of the excitation amplitudes pnk in Eq. (19) slowly varies with
time. Therefore, the selected pnk (with fixed n,k) is in general some function of the slow time scale,
pnk ¼ pnk(tN+1). In a special case, when the excitation amplitude varies linearly with time, we have:

pnk ¼ pnkð0Þ þ rtNþ1, (29)

where pnk(0) denotes the value of variable excitation amplitude at the starting time and r denotes the rate of
changing excitation amplitude.

4. Non-stationary oscillations of a clamped-hinged beam

The system of nonlinear differential equations (4) can be applied directly for studying the transverse
oscillations of a damped clamped-hinged beam. Harmonic excitations can be simplified by taking zero phase
shifts. Considering jn ¼ 0 strictly in pertinent equations and using the proper value of Z, non-stationary
transverse oscillations of the beam are governed by the system of nonlinear partial differential equations (19)
for fundamental, superharmonic and subharmonic resonance following the procedure explained in the
previous section. In order to treat non-stationary oscillations in detail, it is convenient to study the damped
clamped-hinged beam by using the two-mode approximation. For this purpose, analysis of the fundamental
resonance of the damped clamped-hinged beam is performed, where Eq. (19) is considered by choosing the
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subharmonic factor Z ¼ 1 and by setting the number N of degrees of freedom to be equal to N ¼ 2. At
fundamental resonance, the beam is subjected to the weak harmonic excitation, which appears in the same
order of expansion parameter e as modal damping and cubic nonlinearities. Therefore, excitation takes the
form epn1 cosot at this resonance and the remaining amplitudes pn0, pnk(k41) are set equal to zero. On the
contrary, in superharmonic and subharmonic resonances, respectively, the excitation amplitude may not be
necessarily small [4,11]. In such cases, amplitude pn0 in Eq. (19) takes a nonzero value assuring that the
excitation force does not appear at the same order of e as damping and nonlinearities. In this paper, a special
case of superharmonic resonance, caused by the influence of internal resonance, is studied. Second natural
frequency of the beam oL2

is approximately three times of the first natural frequency oL1
so that internal

resonances occur simultaneously [4]. It is worth mentioning that in the case of fundamental resonance, linear
frequencies are equal to the natural frequencies o10 ¼ oL1

and o20 ¼ oL2
, respectively, in Eq. (26). In the

sequel, fundamental resonance with the excitation frequency o near the natural frequency oL1
is studied in

detail.

4.1. Solvability conditions of clamped-hinged beam fundamental resonance with o near oL1

Following the general pattern for the two-mode approximation, non-stationary oscillations in the passage
through fundamental resonance of clamped-hinged beam with o � o10 ¼ oL1

can be computed by the EL–P
method by using the following frequencies:

o ¼ o1 ¼ o10 þ �o11, (30a)

o2 ¼ o20 þ
X1
k¼1

�ko2k, (30b)

where q ¼ 1 and the deviation of the excitation frequency o from the linear frequency o10 is expressed through
the detuning parameter s:

s ¼ o11, (31)

so that the excitation frequency can be written in the form

o ¼ o10 þ �s. (32)

By using frequencies, defined through Eqs. (30b) and (32), three time scales are introduced as follows:

t1 ¼ o10t, (33a)

t2 ¼ o2t, (33b)

t3 ¼ �t. (33c)

From q ¼ 1, tN+1 ¼ t3 it follows that the beam is subjected to the harmonic excitation:

�pn1 cosðtq þ stNþ1Þ ¼ �pn1 cosðt1 þ st3Þ. (34)

Approximate solution of nonlinear partial differential equations governing non-stationary oscillations in
terms of three time scales is sought by means of a power series:

un ¼
X1
k¼0

�kunkðt1; t2; t3Þ. (35)

Solutions unk(t1,t2,t3) of the power series (35) can be computed by solving a system of linear partial
differential equations (22)–(24). Using the two-mode approximation, N ¼ 2, subharmonic factor Z ¼ 1, time
scales (33a–c) and harmonic excitation (34), perturbation steps (22)–(24) recast on the form:

�0 :
P2
i¼1

P2
j¼1

oi0oj0
q2un0

qtiqtj

þ o2
Ln

un0 ¼ 0 , (36)
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�1 :
P2
i¼1

P2
j¼1

oi0oj0
q2un1

qtiqtj

þ o2
Ln

un1 ¼ pn1 cos ðt1 þ st3Þ � 2
P2
i¼1

oi0 o21
q2un0

qtiqt2
þ

q2un0

qtiqt3

� �

�cn

P2
i¼1

oi0
qun0

qti

�
P2

m¼1

P2
p¼1

P2
q¼1

Gnmpqum0up0uq0;

(37)

�2 :
P2
i¼1

P2
j¼1

oi0oj0
q2un2

qtiqtj

þ o2
Ln

un2 ¼ �2
P2
i¼1

oi0 o21
q2un1

qtiqt2
þ

q2un1

qtiqt3
þ o22

q2un0

qtiqt2

� �

�o2
21

q2un0

qt22
� 2o21

q2un0

qt2qt3
�

q2un0

qt23
� cn

P2
i¼1

oi0
qun1

qti

þ o21
qun0

qt2
þ

qun0

qt3

� �

�
P2

m¼1

P2
p¼1

P2
q¼1

Gnmpqðum1up0uq0 þ um0up1uq0 þ um0up0uq1Þ:

..

.

(38)

General solution of Eq. (36) has the form

un0 ¼ An0ðt3Þ cos tn � Fn0ðt3Þ½ � ðn ¼ 1; 2Þ. (39)

Substitution of solution (39) in Eq. (37) gives

X2
i¼1

X2
j¼1

oi0oj0
q2un1

qtiqtj

þ o2
Ln

un1 ¼ pn1 cosðt1 þ st3Þ

þ 2on0An0ðt3Þ o21
d sin tn � Fn0ðt3Þ½ �

dt2
� cos tn � Fn0ðt3Þ½ �

dFn0ðt3Þ
dt3

� �

þ 2on0
dAn0ðt3Þ

dt3
sin tn � Fn0ðt3Þ½ � þ cnon0An0ðt3Þ sin tn � Fn0ðt3Þ½ �

�
1

4

X2
m¼1

X2
p¼1

X2
q¼1

GnmpqAm0ðt3ÞAp0ðt3ÞAq0ðt3Þ½cos½tm þ tp þ tq � Fm0ðt3Þ � Fp0ðt3Þ � Fq0ðt3Þ�

þ cos½tm � tp þ tq � Fm0ðt3Þ þ Fp0ðt3Þ � Fq0ðt3Þ�

þ cos½tm þ tp � tq � Fm0ðt3Þ � Fp0ðt3Þ þ Fq0ðt3Þ�

þ cos ½tm � tp � tq � Fm0ðt3Þ þ Fp0ðt3Þ þ Fq0ðt3Þ��, (40)

where

dsin tn � Fn0ðt3Þ½ �

dt2
¼

0; n ¼ 1;

cos t2 � F20ðt3Þ½ �; n ¼ 2:

(
(41)

The right-hand side of Eq. (40) contains secular terms, which must be eliminated to obtain a uniform
solution. In eliminating secular terms, the phenomenon of the internal resonance is considered simultaneously
through relation between nonlinear frequencies:

o2 ¼ 3o1, (42)

which can be expressed also by relation between time scales:

t2 ¼ 3ðt1 þ st3Þ. (43)

Secular terms are then eliminated, when terms appearing at cos [t1�F10(t3)] and sin [t1�F10(t3)] for
n ¼ 1 and similarly terms appearing at cos [t2�F20(t3)] and sin [t2�F20(t3)] for n ¼ 2, respectively, are



ARTICLE IN PRESS
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collected together and the obtained expressions are equated by zero. In this manner, one obtains solvability
conditions:

p11 cos½st3 þ F10ðt3Þ� � 2o10A10ðt3Þ
dF10ðt3Þ

dt3

�
1

4
A10ðt3Þ½b1111A2

10ðt3Þ þ 2b1212A2
20ðt3Þ

þ b1121A10ðt3ÞA20ðt3Þ cos½3st3 þ 3F10ðt3Þ � F20ðt3Þ�� ¼ 0, (44)

� p11 sin½st3 þ F10ðt3Þ� þ 2o10
dA10ðt3Þ

dt3
þ c1o10A10ðt3Þ þ

1

4
b1121A2

10ðt3ÞA20ðt3Þ

� sin½3st3 þ 3F10ðt3Þ � F20ðt3Þ� ¼ 0, (45)

2o20A20ðt3Þ o21 �
dF20ðt3Þ

dt3

� �
�

1

4

1

3
b2111A3

10ðt3Þ cos½3½st3 þ F10ðt3Þ� � F20ðt3Þ�
�

þ2b2121A2
10ðt3ÞA20ðt3Þ þ b2222A3

20ðt3Þ
�
¼ 0, (46)

2o20
dA20ðt3Þ

dt3
þ c2o20A20ðt3Þ �

1

12
b2111A3

10ðt3Þ sin½3½st3 þ F10ðt3Þ� � F20ðt3Þ� ¼ 0, (47)

where coefficients bnmpq are introduced by means of relation:

bnmpq ¼ Gnmpq þ Gnmqp þ Gnpmq. (48)

By introducing a new variable

gðt3Þ ¼ st3 þ F10ðt3Þ, (49)

Eqs. (44)–(47) can be represented as an autonomous system of nonlinear differential equations, where the slow
time scale t3 does not appear explicitly:

p11 cosðt3Þ þ 2o10A10ðt3Þ s�
dgðt3Þ
dt3

� �
�

1

4
A10ðt3Þ½b1111A2

10ðt3Þ þ 2b1212A2
20ðt3Þ

þ b1121A10ðt3ÞA20ðt3Þ cos½3gðt3Þ � F20ðt3Þ�� ¼ 0, (50)

� p11 sin gðt3Þ þ 2o10
dA10ðt3Þ

dt3
þ c1o10A10ðt3Þ

þ
1

4
b1121A2

10ðt3ÞA20ðt3Þ sin ½3gðt3Þ � F20ðt3Þ� ¼ 0, (51)

2o20A20ðt3Þ o21 �
dF20ðt3Þ

dt3

� �
�

1

4

1

3
b2111A3

10ðt3Þ cos½3gðt3Þ � F20ðt3Þ�
�

þ2b2121A2
10ðt3ÞA20ðt3Þ þ b2222A3

20ðt3Þ
�
¼ 0, (52)

2o20
dA20ðt3Þ

dt3
þ c2o20A20ðt3Þ �

1

12
b2111A3

10ðt3Þ sin½3gðt3Þ � F20ðt3Þ� ¼ 0. (53)

Eqs. (50)–(53) represent a system of ordinary nonlinear differential equations, which can be solved by
numerous techniques of numerical integration, such as the Runge–Kutta method, to obtain non-stationary
oscillations.
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4.2. Stationary resonance of a clamped-hinged beam

Stationary resonance curves for fundamental resonance with excitation frequency o near o10 ¼ oL1

of a clamped-hinged beam with simultaneous internal resonance can be constructed from solvability
conditions (50)–(53), where An0(t3) ¼ An0 ¼ const, g(t3) ¼ g ¼ const and F20(t3) ¼ F20 ¼ const, that is
(dAn0(t3)/dt3) ¼ 0, (dg(t3)/dt3) ¼ 0 and (dF20(t3)/dt3) ¼ 0. Eqs. (50)–(53) then become nonlinear algebraic
equations involving trigonometric functions:

p11 cos gþ 2o10A10s�
1

4
A10½b1111A2

10 þ 2b1212A2
20 þ b1121A10A20 cosð3g� F20Þ� ¼ 0, (54)

�p11 sin gþ c1o10A10 þ
1

4
b1121A2

10A20 sinð3g� F20Þ ¼ 0, (55)

2o20o21A20 �
1

4

1

3
b2111A3

10 cosð3g� F20Þ þ 2b2121A2
10A20 þ b2222A3

20

� �
¼ 0, (56)

c2o20A20 �
1

12
b2111A3

10 sin½3g� F20� ¼ 0. (57)

By some algebraic manipulations, trigonometric functions can be eliminated giving the system of two
polynomial equations:

b2111A2
10ðb1111A2

10 þ 2b1212A2
20 � 8o10sÞ � 3b1121A2

20ð2b2121A2
10 þ b2222A2

20 � 8o20o21Þ
� 	2
þ ð4b2111c1o10A2

10 þ 12b1121c2o20A2
20Þ

2
¼ 16b22111A2

10p2
11, (58)

9A2
20 ð2b2121A2

10 þ b2222A2
20 � 8o20o21Þ

2
þ 16c22o

2
20

� 	
¼ b22111A6

10. (59)

For an undamped clamped-hinged beam, c1 ¼ c2 ¼ 0, Eqs. (58) and (59) are simplified to the form

b2111A2
10ðb1111A2

10 þ 2b1212A2
20 � 8o10sÞ � 3b1121A2

20ð2b2121A2
10

þ b2222A2
20 � 8o20o21Þ ¼ �4b2111A10p11, (60)

3A20ð2b2121A2
10 þ b2222A2

20 � 8o20o21Þ ¼ �b2111A3
10. (61)

To solve the obtained polynomial equations at the first level of approximation, the excitation frequency o
or detuning s, respectively, is prescribed. Because the excitation frequency is preferred as a natural parameter,
the corresponding detuning is calculated from Eqs. (30a) and (31) as

s ¼
o� o10

�
. (62)

The approximate value of frequency o21 for a given � can be computed using Eqs. (30a,b) and (42), where
only the first two terms of the expansion (30b) are considered:

o21 ¼
o2 � o20

�
¼

3o� o20

�
. (63)

In fact, by means of the mentioned equations, frequency o21 can be eliminated from polynomial equations
(58) and (59) in the damped case or Eqs. (60) and (61) in the undamped case of a clamped-hinged beam.
Instead both amplitudes An0 (n ¼ 1,2) are computed for a given excitation frequency o or detuning s,
respectively; the simplest procedure can be applied alternatively. The procedure starts from the known
amplitude A10 (or A20), then solves Eq. (59) or Eq. (61) for the amplitude A20 (or A10) and determines the
detuning s from Eq. (58) or Eq. (60), respectively. It is worth mentioning that polynomial equations can be
solved in the case of the undamped clamped-hinged beam by using symbolic computation in Mathematicas

5.2. However, in the damped case numerical procedures such as the Newton–Raphson method must be used.
To be able to perform branch tracing, the method must be improved by a suitable continuation method. The
arc-length continuation method, proposed in Ref. [9], is implemented and successfully used in computations,
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presented in this paper. The unknown frequency o21 can be determined more accurately, when the second level
of approximation, based on solving Eq. (38), is considered.

4.3. Passage through fundamental resonance of a clamped-hinged beam

The passage through fundamental resonance of a clamped-hinged beam is conducted with time-varying
excitation frequency o, where the subharmonic factor is set to be equal to Z ¼ 1. As in previous sections, the
two-mode approximation is considered with a ratio between the first and the second natural frequency equal
to be oL1

: oL2
¼ 1 : 3:2406 [5]. Due to the strong coupling between both modes, internal resonance appears

simultaneously. First, the stationary resonance curve, treated in the previous section is, computed. To
determine the effects of the time-varying excitation frequency, Eq. (32) is considered and the detuning
parameter is put in the form s(t3) ¼ s0+rt3, where s0 denotes the value of the detuning parameter at the
starting time t3 ¼ 0 and r means the rate of changing s. Instead of Eq. (62) with fixed excitation frequency o,
variable detuning in Eq. (50) is computed by means of the following equation:

sðt3Þ ¼
o0 � o10

�
þ rt3, (64)

where o0 denotes the initial value of excitation frequency at starting time t3 ¼ 0. For positive values of r, the
passage through fundamental resonance is constructed with increasing excitation frequency. The passage
through fundamental resonance at decreasing excitation frequency is obtained if the rate of changing s takes
negative values. Besides the excitation frequency o, frequency o21 in Eq. (52) also varies with time. By
combining Eqs. (30b) and (42), the first-order approximation of time-varying frequency o21 takes the
following form:

o21 ¼
3o1 � o20

�
¼

3o0 � o20

�
þ 3rt3. (65)

After substitution of Eqs. (64) and (65) into the system of autonomous differential equations (50)–(53),
numerical integration is performed, giving non-stationary response in the passage through fundamental
resonance.

5. Stability analysis

Because differential equations (50)–(53) of fundamental resonance are autonomous, the stability of their
solutions can be conveniently determined by means of corresponding linearized equations. Alternatively,
stability of the computed solutions can be determined by applying the Floquet theory. The latter method can
be used for conducting stability analysis of periodic as well as almost periodic solutions and is presented in
Ref. [9]. Because the stability analysis is based on the linearization of differential equations, it is simple to use
it in the cases that are considered here and can be briefly outlined in the following.

By using vector notation:

w ¼ A10;A20; g;F20


 �T
; w0 ¼

dA10

dt3
;
dA20

dt3
;
dg
dt3

;
dF10

dt3

� 
T

, (66)

Eqs. (50)–(53) can be rewritten symbolically in the form:

w0 ¼ fðwÞ, (67)

where

fðwÞ ¼ f 1ðwÞ; f 2ðwÞ; f 3ðwÞ; f 4ðwÞ

 �T

(68)

and where vector f(w) is combined from components:

f 1 ¼
4p11 sin gðt3Þ � 4c1o10A10ðt3Þ � b1121A2

10ðt3ÞA20ðt3Þ sin½3gðt3Þ � F20ðt3Þ�
8o10

, (69a)
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f 2 ¼
�12c2o20A20ðt3Þ þ b2111A3

10ðt3Þ sin½3gðt3Þ � F20ðt3Þ�
24o20

, (69b)

f 3 ¼
4p11 cos gðt3Þ þ 8o10A10ðt3Þs� A10ðt3Þ½b1111A2

10ðt3Þ þ 2b1212A2
20ðt3Þ þ b1121A10ðt3ÞA20ðt3Þ cos½3gðt3Þ � F20ðt3Þ��

8o10A10ðt3Þ
,

(69c)

f 4 ¼
24o20A20ðt3Þo21 � ½b2111A3

10ðt3Þ cos½3gðt3Þ � F20ðt3Þ� þ 6b2121A2
10ðt3ÞA20ðt3Þ þ 3b2222A3

20ðt3Þ�
24o20A20ðt3Þ

. (69d)

Eq. (67) is linearized by using the Jacobian matrix J:

w0 ¼ w00 þ dw0 ¼ fðw0Þ þ
qf i

qwj

� �
w¼w0

� dw ¼ fðw0Þ þ J � dw (70)

so that a slight perturbation dw of constant solution w0 satisfies the equation:

dw0 ¼
qf i

qwj

� �
w¼w0

� dw ¼ J � dw. (71)

Let lj (j ¼ 1,2,y,N) represent eigenvalues of the Jacobian matrix or eigenvalues of the equation
det(J�lI) ¼ 0, respectively. If real parts of eigenvalues Re (lj)o0 for all j, then the constant solution w0 is
stable and if Re (lj)40 for any j, the solution w0 is unstable. If Re (lj) ¼ 0 for some j and all remaining
Re (lj)o0 (j 6¼k), stability of solution w0 cannot be determined by linearization. This being the case, where
nonlinear means must be applied.

6. Results and discussions

For presentation of the EL–P method, passage through fundamental resonance of damped as well as
undamped clamped-hinged beam is computed and discussed. In the passage through resonance it is always
supposed that starting amplitudes and phases, respectively, are in accordance with amplitudes and phases of
stationary response of both increased and decreased excitation frequency. In the present study, internal
resonance is considered simultaneously. Non-stationary resonances of both damped and undamped beam are
computed for excitation amplitudes p11 ¼ 0.03 and p21 ¼ 0, respectively. The two-mode approximation is
used, where the ratio between the first and the second natural frequency is equal oL1

: oL2
¼ 1 : 3:2406.

Consequently, the resonance course for variable excitation frequency is computed depending on the
dimensionless frequency ratio o=oL1

. Due to the fundamental resonance, the subharmonic factor is set to be
equal Z ¼ 1. Compared to the results of a computed stationary resonance curve with analysis conducted by
Lau et al. [5], who studied only the undamped case, the expansion parameter e is set to be equal e ¼ 1. Values
of coefficients Gnmpq, bnmpq can be found elsewhere in the literature [4,10].

6.1. Stationary resonance curves of a clamped-hinged beam

Two types of branches of stationary resonance curves of a clamped-hinged beam exist, which are called in-
phase and out-of-phase resonances. Stationary resonance curves of a damped beam with damping coefficients
c1 ¼ c2 ¼ 0.001, which belong to the in-phase and out-of-phase resonances for both oscillation modes, are
plotted in Figs. 1 and 2, respectively. In Fig. 1, the amplitude course A10 of the first mode of oscillation is
shown, where branches of in-phase resonances are denoted as A

inð1Þ
10 and A

inð2Þ
10 and branches of out-of-phase

resonances are denoted as A
outð1Þ
10 and A

outð2Þ
10 , respectively. In Fig. 2, the corresponding amplitude course A20

of the second mode of oscillation is plotted, where branches of in-phase resonances are denoted as
A

inð1Þ
20 and A

inð2Þ
20 and branches of out-of-phase resonances are denoted as A

outð1Þ
20 and A

outð2Þ
20 , respectively. In

both figures, stable branches are drawn by solid lines and unstable branches are plotted by dotted lines.
Different branches of stationary resonance curves, computed by the EL–P method, are compared by results,
obtained by the IHB method, which are depicted by broken lines. Branches of solutions in both methods are
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Fig. 1. Stationary resonance of a damped clamped-hinged beam with excitation p11 ¼ 0.03, p21 ¼ 0. The course of amplitude A10 of the

first oscillation mode.

Fig. 2. Stationary resonance of a damped clamped-hinged beam with excitation p11 ¼ 0.03, p21 ¼ 0. The course of amplitude A20 of the

second oscillation mode.
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traced by the arc-length continuation method, applied in Ref. [9]. Compared to the results for stationary
resonance curves obtained by the EL–P method and the IHB method in Figs. 1 and 2, respectively, it is shown
that stationary resonance curves agree reasonable well; however, the EL–P method is much less time
consuming. From this observation it is concluded that the EL–P method is reliable and efficient. In the case of
amplitude A10, which corresponds to the first oscillation mode of the stationary resonance, in-phase and out-
of-phase responses consist of two curves, which for convenience can be denoted as outer and inner curves.
Each curve possesses one loop, but a different number of turning points. The outer curve of stationary
in-phase and out-of-phase responses has two turning points located on the corresponding loop. The inner
curve has three turning points, from which two points are located on the inner curve loop and an extra turning
point is placed approximately at the frequency ratio o=oL1

¼ 1:05, where amplitude A10 begins to continually
decrease as the frequency increases.
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Stationary resonance of the second oscillation mode in Fig. 2 is presented by the course of amplitude A20.
Because amplitudes in both in-phase and out-of-phase branches alternatively take positive and negative
values, two curves of in-phase and out-of-phase resonances exist. However, they cannot be denoted as inner
and outer curve, respectively. Each curve creates one’s own loop and possesses turning points. The existence of
loops on the resonance curves of both oscillation modes indicates the appearance of superharmonic resonance,
which is caused by internal resonance. For given excitation amplitudes p11 ¼ 0.03, p21 ¼ 0, superharmonic
resonances are present in both in-phase and out-of-phase responses. However, when the excitation amplitude
p11 increases and reaches a certain critical value, superharmonic resonance disappears. This phenomenon is
depicted on branches A

inð2Þ
10 ; A

outð2Þ
10 in Fig. 3 for the first mode and on branches A

outð1Þ
20 ; A

outð2Þ
20 of Fig. 4 for the
Fig. 3. Stationary resonance of damped clamped-hinged beam with excitation p11 ¼ 0.064, p21 ¼ 0: the course of amplitude A10 of the first

oscillation mode.

Fig. 4. Stationary resonance of a damped clamped-hinged beam with excitation p11 ¼ 0.064, p21 ¼ 0: the course of amplitude A20 of the

second oscillation mode.
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second mode of oscillation. Disappearance of superharmonic resonance at a critical level of excitation due to
the internal resonance of the clamped-hinged beam is investigated in details by Chen et al. [6].
6.2. Non-stationary resonance curves of a clamped-hinged beam

To determine the effects of the time-varying excitation frequency, Eq. (32) is considered and a detuning
parameter is put into the form s(t3) ¼ s0+rt3. The examples are first presented for damped and then for the
undamped clamped-hinged beam, respectively. Throughout the analysis, the passage through resonance is
conducted for positive values of amplitudes only. Because non-stationary response in the passage through
resonance is always compared with the stationary one, consequently in-phase and out-of-phase branches of
Fig. 5. Passage through fundamental resonance of a damped clamped-hinged beam at small rates of changing s: the course of amplitude

A10.

Fig. 6. Passage through fundamental resonance of a damped clamped-hinged beam at greater rates of changing s: the course of amplitude

A10.
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stationary resonance curves are shown, having only positive values of amplitudes. The advantage of the EL–P
method is that non-stationary responses cannot be computed by the IHB method and therefore comparison of
results between the EL–P method and the IHB method in a non-stationary cases is not possible.

The results of computation of non-stationary frequency response of a damped clamped-hinged beam for the
first mode of oscillations are presented in Figs. 5 and 6 and for the second mode of oscillations in Figs. 7 and 8,
respectively. The non-stationary course of amplitude A10 is plotted together with branches of the stationary in-
phase resonance course.

The passage through fundamental resonance is conducted for various rates of changing s, where both
increasing and decreasing frequencies are applied. The passage through resonance with increasing frequency
begins at the starting frequency ratio o=oL1

¼ 0:5 and embraces the dimensionless frequency range
Fig. 7. Passage through fundamental resonance of a damped clamped-hinged beam at small rates of changing s: the course of amplitude

A20.

Fig. 8. Passage through fundamental resonance of a damped clamped-hinged beam at greater rates of changing s: the course of amplitude

A20.
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0:5po=oL1
p1:4. Thereafter, the passage for decreasing frequency is performed in the same range, where

frequency takes the starting value, which corresponds to the frequency ratio o=oL1
¼ 1:4 and then decreases

continually. Fig. 5 represents the passage through fundamental resonance at rate r ¼70.0005 and Fig. 6
shows the corresponding passages through fundamental resonance at rates r ¼70.002, 70.005 and 70.01,
respectively. For the increased frequency, the non-stationary response of the amplitude A10 first follows the
stationary response, but sooner or later starts to deviate from it. The smaller the absolute value of rate, later
deviations from the stationary curve appear in the passage through resonance. The non-stationary response in
the case of the smallest rate r ¼ 0.0005 in Fig. 5 first follows the stationary response, next passes the first local
maxima and then continues along the stationary curve towards the first turning point on the outer loop and
then develops the beat phenomenon.

Passages through fundamental resonance with greater rates r ¼ 0.002, 0.005 and 0.01 in Fig. 6 show non-
stationary responses, which leave the stationary curve much before the first local maxima and develop the beat
phenomenon after the frequency ratio corresponding to the local maxima is exceeded. At rate r ¼ 0.002, the
beat phenomenon appears, which oscillates around the outer and inner stationary curve with increasing
tendency. At rates r ¼ 0.005 and 0.01, respectively, the amplitude of local maxima is never reached and the
beat phenomenon oscillates with smaller and smaller subsequent peaks as the frequency increases. Frequencies
where these peaks appear increase more as the rate of changing s increases. Non-stationary response of
amplitude A10 for decreasing frequency with the corresponding negative value of rate is obtained, where the
response emanates from branch A

inð2Þ
10 on the lowest part of inner stationary curve. Non-stationary response

first follows the stationary response by starting at a selected initial frequency and later deviates from the
stationary curve as the excitation frequency decreases. Deviations from the stationary curve are more
pronounced as the excitation frequency decreases toward the frequency of the third turning point on the inner
curve. The maximum peak amplitude and the frequency of the maximum peak decrease as the negative value
of rate of changing s increases. After the maximum peak amplitude is reached, the beat phenomenon develops
and the non-stationary resonance curve oscillates with smaller and smaller subsequent peaks as the frequency
decreases.

Frequencies, at which these peaks appear are lower if negative rates increase. The smaller the negative rate
of changing s, the more the beat phenomenon is decayed and dies away by approaching towards the
stationary response curve. Due to the nonlinearity, asymmetry appears between response curves at increasing
and decreasing frequency, respectively. Asymmetry is pronounced more, as the rate of changing s is smaller.

Figs. 7 and 8 represent the passage through fundamental resonance of the second mode oscillation. In
Fig. 7, the excitation frequency increases with the smallest rate (r ¼ 0.0005) of changing s and Fig. 8 shows the
passage with increasing excitation frequency at greater rates r ¼ 0.002, 0.005 and 0.01. For decreasing
excitation frequency, the corresponding negative values of rates are considered. The non-stationary responses
with decreasing frequency in both Figs. 7 and 8 emanate from a part of branch A

outð2Þ
20 of stationary response,

which spreads in the vicinity of the frequency axis (compare to Fig. 2).
It is evident that similar conclusions regarding beat phenomenon evolution also hold in this case. The

second mode non-stationary oscillation is more weakly excited as the first mode non-stationary oscillation.
The results of computation of the non-stationary frequency response of the undamped clamped-hinged

beam for the first mode of oscillations are presented in Figs. 9 and 10 and for the second mode of oscillations
in Figs. 11 and 12, respectively. The non-stationary course of amplitude A10 is plotted together with branches
of the stationary in-phase resonance course. The passage through fundamental resonance is conducted for
various rates of changing s, where both increasing and decreasing frequencies are applied under equal
conditions as in the damped case. Therefore, the passage through resonance with increasing frequency begins
at the starting frequency ratio o=oL1

¼ 0:5 and embraces the dimensionless frequency range 0:5po=oL1
p1:4.

Thereafter, the passage for decreasing frequency is performed in the same range, where frequency takes the
starting value, which corresponds to the frequency ratio o=oL1

¼ 1:4 and then decreases continually. Fig. 9
represents the passage through fundamental resonance at rate r ¼70.0005, and Fig. 10 shows the
corresponding passages through fundamental resonance at rates r ¼70.002,70.005 and70.01, respectively.
Because there is a full correspondence with the damped case, non-stationary responses behave like responses
in the damped case at all rates of changing s. It is proved that damping has great impact on amplitudes as well
as on frequencies of peaks in the beat phenomenon at small rates r (compare Figs. 5 and 9) and small impact at
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Fig. 10. Passage through fundamental resonance of an undamped clamped-hinged beam at greater rates of changing s: the course of

amplitude is A10.

Fig. 9. Passage through fundamental resonance of an undamped clamped–hinged beam at small rate of changing s: the course of

amplitude is A10.
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greater rates of changing s (compare Figs. 6 and 10). Non-stationary frequency response with decreasing

frequency in Figs. 9 and 10 emanates from the lowest part of branch A
inð3Þ
10 of the stationary resonance curve.

Evidently, there is an important distinction in the passage through fundamental resonance with decreasing
frequency, where the beat phenomenon does not die away by approaching towards the stationary resonance curve.

This behavior can be explained through the absence of damping. Due to the nonlinearity again the
asymmetry appears between response curves at increasing and decreasing frequencies, respectively.

Figs. 11 and 12 show the passage through fundamental resonance of the second mode oscillation. In Fig. 11,
the passage with increasing excitation frequency is conducted by applying the smallest rate of changing s
(r ¼ 0.0005) and for decreasing frequency the corresponding negative value of rate is applied. In Fig. 12 the
passages at greater rates r ¼70.002, 70.005 and 70.01 are considered. Non-stationary frequency responses
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Fig. 11. Passage through fundamental resonance of an undamped clamped-hinged beam at small rates of changing s: the course of

amplitude A20.

Fig. 12. Passage through fundamental resonance of an undamped clamped-hinged beam at greater rates of changing s: the course of

amplitude A20.
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with decreasing frequency in Figs. 11 and 12 emanate from branch A
outð1Þ
20 of the stationary curve, which

spreads in the vicinity of the frequency axis. The evolution of beat phenomenon obeys the same rules as holds
for the first mode oscillation.

Again, the important difference is that the second mode non-stationary oscillation is more weakly excited
than the first mode non-stationary oscillation.

6.3. Non-stationary response curves of a clamped-hinged beam depending on varying excitation amplitude

Non-stationary responses of clamped-hinged beam depending on varying excitation amplitude are again
governed by Eqs. (50)–(53), where excitation frequency o ¼ o1, detuning s ¼ (o0�o10)/e and frequency
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o21 ¼ (3o1�o20)/e are kept constant and amplitude p11 varies slowly with time. In special case of linear time
dependence, p11 takes the form:

p11 ¼ p11ð0Þ þ rt3, (72)

where p11(0) denotes the value of variable excitation amplitude at the starting time and r denotes the rate of
changing excitation amplitude. If the excitation frequency o is less than or equal to the first natural frequency
oL1

, then stationary response amplitudes A10 and A20 are single-valued and non-stationary responses coincide
with stationary ones. This behavior is depicted in Fig. 13 for the value of frequency ratio o=oL1

¼ 0:9
and damping coefficients c1 ¼ c2 ¼ 0.006. Note, that oscillations of the second mode are entirely suppressed
in both stationary and non-stationary responses (amplitude A20 takes zero value at each excitation
amplitude p11). If the excitation frequency lies in the range o4oL1

, then the stationary responses of
amplitudes A10 and A20 possess jump phenomenon and loops. At higher values o, loops disappear. Due to the
Fig. 13. Stationary and non-stationary responses of amplitudes A10 and A20 depending on slowly varied excitation amplitude p11 at

excitation frequency o ¼ 0:9oL1
.

Fig. 14. Stationary and non-stationary responses of amplitude A10 depending on slowly varying excitation amplitude p11 at excitation

frequency o ¼ 1:1oL1
.
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Fig. 15. Stationary and non-stationary responses of amplitude A20 depending on slowly varying excitation amplitude p11 at excitation

frequency o ¼ 1:1oL1
.
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jump phenomenon, non-stationary responses of amplitudes A10 and A20 gradually evolve in the beat
phenomenon, which entirely distinguishes from the stationary response. As an example, non-stationary
response curves for increasing as well as decreasing excitation amplitude p11 are computed for values of
frequency ratio o=oL1

¼ 1:1 and damping coefficients c1 ¼ c2 ¼ 0.006. Increasing excitation amplitude p11
starts with initial value p11(0) ¼ 0 and is slowly varied with rate r ¼ 0.00025. Decreasing amplitude p11 starts
with the maximal value of excitation amplitude reached in stationary response and then is slowly varied with
rate r ¼ �0.00025. Non-stationary response together with corresponding stationary response of amplitude A10

is shown in Fig. 14.
When the excitation amplitude p11 increases, non-stationary response initially follows the lower stable

branch of the stationary curve; however, in the vicinity of the turning point, it leaves the stationary curve and
develops a beating phenomenon. At decreasing excitation amplitude, non-stationary response initially follows
the upper stable branch of stationary curve and in the vicinity of the turning point leaves the stationary curve
approaching the zero-valued amplitude A10. Note that the stationary response indicates a jump phenomenon
and a loop is clearly visible in Fig. 14.

The non-stationary response of amplitude A20 together with the stationary response is depicted in Fig. 15.
Similarly, as in the case of amplitude A10, excitation amplitude p11 is firstly increased, where the non-
stationary response at the beginning follows the stationary curve and then deviates from it by developing the
beat phenomenon. In the passage with decreasing excitation amplitude, non-stationary response first follows
the stationary curve and then deviates from it by approaching towards the zero value of amplitude A20.

7. Conclusions

A perturbation method with multiple time scales is presented for N-dof dynamical systems having cubic
nonlinearities and is capable of treating non-stationary oscillations, produced by slowly varying parameters.
The impact of slowly varying parameters on a system response is considered by adding an additional, slow
time scale to the time scales of the nonlinear system, which generally correspond to the incommensurate
nonlinear frequencies of the aperiodic response. The method is formulated for studying the non-stationary
fundamental, superharmonic and subharmonic resonances under the influence of slowly varying excitation
frequency and excitation amplitude, respectively. The non-stationary fundamental resonance of damped as
well as undamped clamped-hinged beams by considering internal resonance and by including stability analysis
of stationary response is presented in details. Computed non-stationary responses differ very much from
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stationary responses. From analysis of non-stationary resonances it can be concluded that the present method
offers better insight into the phenomenon of clamped-hinged beam vibrations and cannot be approximated by
stationary analysis in the presence of slowly varying parameters. Indeed, responses of stationary resonances
are also computed by the present method and results are compared by the IHB method to show good
agreement. Branch tracing of the stationary solutions by arc-length continuation is implemented, which leads
to the conclusion that the EL–P method is reliable and efficient. Quite so, in the presence of weak
nonlinearities, the EL–P method has an evident advantage over the IHB method due to its deficiency of
computing non-stationary responses. The EL–P method can be easily generalized for treating dynamical
systems with other types of nonlinearities, such as quadratic nonlinearities, as well as treating non-stationary
combination resonance, which is beyond the scope of the conventional Lindstedt–Poincare method [11,12].
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[9] R.R. Pušenjak, M.M. Oblak, Incremental harmonic balance method with multiple time variables for dynamical systems with cubic

non-linearities, International Journal for Numerical Methods in Engineering 59 (2) (2004) 255–292.

[10] S.H. Chen, Y.K. Cheung, A modified Lindstedt–Poincare method for a strongly non-linear two-degree-of-freedom system, Journal of

Sound and Vibration 193 (4) (1996) 751–762.

[11] L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, Boston, 2001.

[12] C. Hayashi, Nonlinear Oscillations in Physical Systems, Mc-Graw-Hill, New York, 1964.


	Extended Lindstedt-Poincare method for non-stationary resonances of dynamical systems with cubic nonlinearities
	Introduction
	Nonlinear oscillation equations of dynamical systems with viscous damping and cubic nonlinearities
	Extended Lindstedt-Poincare method
	Non-stationary oscillations at fundamental, superharmonic and subharmonic resonances
	Passage through resonance with slowly varying parameters

	Non-stationary oscillations of a clamped-hinged beam
	Solvability conditions of clamped-hinged beam fundamental resonance with omega near  L1
	Stationary resonance of a clamped-hinged beam
	Passage through fundamental resonance of a clamped-hinged beam

	Stability analysis
	Results and discussions
	Stationary resonance curves of a clamped-hinged beam
	Non-stationary resonance curves of a clamped-hinged beam
	Non-stationary response curves of a clamped-hinged beam depending on varying excitation amplitude

	Conclusions
	Acknowledgements
	References


